Как изготовить тепловой насос френетта своими руками

Людям, переезжающим жить за город, приходится решать вопрос с обогревом своего дома. Газопровод есть не везде, а устанавливать электрическое отопление очень дорого. Кроме того, в дачных посёлках часто бывают проблемы и перебои с электричеством. Установка теплонасоса может стать выходом из этой ситуации. Промышленность производит оборудование разного типа, вдобавок, можно изготовить тепловой насос своими руками.

Принцип работы и составные части теплового насоса

В принципе, работа теплового насоса представляет собой совместное функционирование трех замкнутых контуров, которые взаимодействуют между собой:

  •  Первый, по которому циркулирует теплоноситель, забирающий тепловую энергию из низкотемпературной окружающей среды (почвы, воды, воздуха);
  •  Второй, в котором циркулирует жидкость с низкой температурой испарения (например, фреон), забирает эту энергию, с помощью процессов испарения и конденсации увеличивает температуру и отдает тепло третьему контуру;
  •  Третий контур представляет собой ни что иное, как систему отопления дома (чаще всего теплые полы), он забирает тепловую энергию из конденсатора и отдает помещению.
  • По такому принципу работают все тепловые насосы, но в устройствах типа «грунт, вода/вода» в первом и третьем контурах жидкий теплоноситель, в устройствах «воздух/вода» — вместо первого контура наружный воздух, а в устройствах «воздух/воздух» и вместо первого и третьего контуров воздух наружный и помещения соответственно.

Для того чтобы такая система работала необходимы такие основные элементы:

Принцип работы и составные части теплового насоса
  • Испаритель –в котором под воздействием тепловой энергии теплоносителя первого контура , через теплообменник, происходит нагревание и испарение жидкого хладагента (фреона);
  • Компрессор, который сжимает парообразный хладагент (при этом происходит выделение тепловой энергии);
  • Конденсатор, в котором теплый сжатый хладагент с помощью теплообменника отдает свою энергию теплоносителю третьего контура, а сам конденсируется (превращается в жидкость).
  • Терморегулирующий вентиль или клапан (ТРВ).
Принцип работы и составные части теплового насоса

Все эти элементы соединены между собой герметичным трубопроводом второго контура. Испаритель, кроме того, должен иметь возможность подсоединения к первому контуру, а конденсатор – к системе отопления дома.

Принцип работы и составные части теплового насоса

Рис. 1 Основные элементы теплового насоса

Принцип работы и составные части теплового насоса

Принцип работы теплового насоса для отопления дома

Тепловым насосом называют не отдельно взятый прибор, а установку, состоящую из следующих компонентов:

  • Циркуляционного насоса;
  • Испарителя;
  • Компрессора;
  • Конденсатора;
  • Других коммуникаций в зависимости от типа установки.

Все элементы соединены в цепь при помощи трубопровода. Задачами системы являются сбор энергии, выделение тепла и перенос его к месту потребления. Примерами работы простейшего теплового насоса являются холодильник, кондиционер или сплит-система. Испаритель и конденсатор выполняют роль теплообменников.

Разобравшись в принципе работы теплонасоса, не составит труда сделать такое устройство самостоятельно

Принцип работы теплового насоса для отопления дома

Теплонасосные установки можно классифицировать по источнику и носителю тепла.

Виды устройств различают по двум признакам. Первый из них – среда, которая является источником энергии, второй – носитель, которому энергия передаётся, и который непосредственно обеспечивает обогрев жилища. Выделяют следующие типы систем:

  • Воздух – воздух;
  • Воздух – вода;
  • Вода – вода;
  • Земля – вода;
  • Земля – воздух.

Насос приводится в действие электрическим током, дизельным генератором или работает от солнечной батареи. Теплоноситель (вода или воздух) циркулирует по трубкам, проходит через испаритель и отдаёт тепло хладагенту. Происходит переход хладагента из жидкого в газообразное состояние. Компрессор сжимает газ с повышением температуры. В конденсаторе происходит выделение энергии и нагревание теплоносителя. Далее вещество, нагретое до высокой температуры, поступает в систему отопления дома. Выходит теплоноситель уже охлаждённым, цикл повторяется. Таким образом, затраты электроэнергии (либо другого источника энергии) идут только на работу циркуляционного насоса и теплового прибора. Обогрев дома происходит не электричеством, а теплом природного накопителя энергии.

Изготовление

Тепловой насос

Тепловой насос может быть изготовлен из имеющихся в хозяйстве деталей или путем приобретения дешёвых бывших в употреблении запасных частей. Порядок изготовления установки следующий:

  1. Приобретаем готовый компрессор в специализированных магазинах или используем компрессор от обычного кондиционера. Закрепляем его к стене, где будет располагаться наша установка. Надёжность крепления обеспечивается двумя кронштейнами L-300.
  2. Изготавливаем конденсатор. Для этого из нержавеющей стали бак с объемом около ста литров разрезаем пополам. Устанавливаем в бак змеевик из тонкой медной трубки с толщиной стенки не менее 1 мм. Для змеевика можно приобрести сантехническую трубку или применить медную трубку от старого холодильника. Змеевик изготавливаем следующим образом:
    1. на кислородный или газовый баллон наматывается медная трубка, важно выдержать небольшое расстояние между витками, которое должно быть одинаковым;
    2. для фиксации положения витков трубки берём два перфорированных алюминиевых уголка и прикрепляем их к змеевику таким образом, чтобы каждый виток нашей трубки был расположен напротив отверстия в уголке. Уголки обеспечат одинаковый шаг расположения витков и придадут геометрическую неизменяемость всей конструкции змеевика.
  3. После установки змеевика, половинки бака свариваем между собой, предварительно вварив необходимые резьбовые соединения.
  4. Изготавливаем испаритель. Берем обычную закрытую ёмкость из пластмассы объёмом 60 или 80 литров. В неё вмонтируем змеевик из трубки диаметром в ¾ дюйма и резьбовые соединения для труб слива и поступления воды (допускаются обычные водопроводные трубы). Готовый испаритель также закрепляем на стене при помощи L -кронштейнов необходимого размера.
  5. Приглашаем мастера для сборки системы, сварки медных трубок и закачки фреона. Не имея опыта работы с холодильным оборудованием, не надо пробовать выполнить эту работу самостоятельно. Это может привести к выходу из строя всей конструкции и чревато получением тяжёлых травм.

После готовности основной части нашей системы, необходимо выполнить её подсоединение к устройствам распределения и забора тепла.

Сборка установки забора тепла зависит от типа насоса и источника тепла.

Итоги

Несомненно, стоимость теплового насоса из кондиционера в разы ниже готовых заводских вариантов, даже китайского производства. Но нюансов тут море: нужно позаботиться об источнике и количестве подаваемого тепла, правильно рассчитать длину теплообменников (змеевиков), установить автоматику, обеспечить гарантированное питание, и т.д. Но если вы в состоянии решит эти проблемы, то это, несомненно, выгодно.  Позволим дать вам совет: в первый год очень желательно иметь резервное отопление, а испытания и пробный пуск, лучше проводить еще летом, чтобы было время на доработку агрегата до начала отопительного сезона.

Тепловой насос Френетта – принцип работы и возможность самостоятельного изготовления

Стремление вложить поменьше и получить побольше всегда было сильно в нашем народе. Не обошла стороной эта особенность и такую практичную область, как эффективное теплоснабжение.

Множество альтернативных установок было изобретено, но лишь единицы нашли реальное применение.

В последние несколько лет активно обсуждается конструкция американского изобретателя Eugene Frenette, который в 1977 оформил патент на тепловой насос.

Как утверждают многие интернет-издания, КПД этой чудо машины может достигать 1000%, но так ли это в действительности? Прежде, чем опровергнуть или доказать это, необходимо разобраться в особенностях конструкции теплового насоса Френетта.

Конструкция и принцип работы

Согласно информации из патента № US 4143639 A, выданного 22 августа 1977, в основе работы тепловой установки лежит практическое применение повышения температуры жидкости при ее интенсивном движении.

Конструкция состоит из 2-х цилиндров, установленных друг в друга. Меньший из них находится на валу, который проходит через всю конструкцию и имеет привод к двигателю.

Он также заполнен маслом, которое при вращении нагревается о стенки цилиндра. С помощью конвекции воздуха, проходящего через прослойку между цилиндрами передается тепловая энергия.

Вентилятор обеспечивает быстрый отток нагретых воздушных масс в помещение.

Судя по сообщениям в прессе, изобретатель неоднократно совершенствовал свою конструкцию. Самый распространенный и известный вариант показан на рисунке.

В новой конструкции был убран вентилятор и внутренний цилиндр. Вместо него на ось установлены стальные диски, которые многократно увеличивают площадь контакта с жидкостью.

Путем вращения достигается эффект нагрева масла, которое из-за возникшего вихревого потока начинает поступать в верхний патрубок и дальше по системе отопления.

Основные элементы эффективности работы данной системы:

  • Закрытая циркуляция теплоносителя.
  • Отсутствие теплообменника как такового.
  • Энергия нагрева превышает в 10 раз мощность приводного двигателя, т.е. КПД – 1000%.

В качестве доказательства приводится совместная работа хабаровских ученых, которые долгие годы совершенствовали конструкцию теплового насоса Френетта.

В качестве основной емкости взята коническая конструкция, внутри которой располагаются диски. При их вращении жидкость начинает стремительное передвижение через отверстия, в результате чего создаются вакуумные зоны. Причем значение температуры в локальных граничных областях может достигать 10000°С.

В зависимости от скорости вращения, жидкость может переходить в следующие состояния:

Обороты двигателя/мин Описание состоянии жидкости
7600-8000 Вода нагревается до 100°С
8000-10000 Образование пара
10000-13000 Парообразование с температурой 450°С
15000 и выше Разложение воды на составляющие элементы (кислород и водород) с понижением температуры до -60°С

Звучит очень заманчиво. Тем более, что в сети Интернет можно найти как минимум 1 видеоролик, демонстрирующий рабочую модель теплового насоса Френетта, сделанного своими руками (смотрите в конце статьи).

Факты

При более тщательном анализе предложенных схем возникает целый ряд вопросов, на которые ответа найти невозможно.

Математические выкладки и результаты испытаний

Это является фундаментальной основой при проведении научных и исследовательских работ. В данном случае оперируют лишь показателем КПД, который равен отношению полученной энергии к затраченной. Причем ни одна величина, ни другая не представлена в цифровом отображении.

Мощность двигателя

При увеличении площади контакта жидкости с дисками возрастает коэффициент сопротивления, что требует большей энергии для вращения вала. При средних оборотах стандартных электродвигателей 1000-1500 достичь эффекта нагрева воды без увеличения потребляемой энергии невозможно.

Частота вращения вала

Для третей схемы установки необходимая частота вращения вала должна быть не меньше 7000 об/мин. Такие параметры возможны лишь для специальных установок, которые изготавливаются под заказ. Финансовая целесообразность их закупки равна нулю.

Группа ученых из Хабаровска

Описание 3-е модели теплового насоса является лишь частичными выдержками из патента № RU2204089, выданного в ФГУ ФИПС 26 июля 2001г.

В нем упоминается лишь об увеличении эффективности получения горячей воды или пара для коммунальных или промышленных служб. О совершенствовании теплового насоса Френетта не говорится ничего, так же как и о показателях КПД выше 100%.

Интересным становится факт, что данный патент потерял свою силу из-за неуплаты взносов.

Вследствие невозможности проверить на практике эффективность теплового насоса Френетта следует с некоторой долей скептицизма относиться к данному изобретению. И если бы оно было по-настоящему действенно, то мы бы уже давно наблюдали выпуск теплового насоса в промышленных масштабах.

Принцип работы теплового насоса

Работает система достаточно просто, и удобнее всего представить ее на примере холодильника: внутри агрегата воздух охлаждается, нагревая в процессе заднюю стенку-радиатор, здесь же нагреваться будет испаритель, отдавая тепло в систему отопления, а охлаждать будет неиссякаемые запасы низкотемпературного тепла.

Под неиссякаемыми запасами подразумеваются геотермальное тепло либо грунтовые воды. Эти два источника сохраняют приблизительно одинаковую температуру (около плюс 5-6 градусов) весь год и идеально подходят.

Принцип работы теплового насоса

Независимо от схемы переноса тепла (воздух-воздух или вода-вода), принцип работы теплового насоса неизменный.

Читайте также:  Как сделать капельницу для печки на отработке

Область применения тепловых насосов

Тепловой насос Френетта

В принципе устройства данного типа можно использовать для обогрева самых различных помещений, начиная от гаражей, хозяйственных построек, жилых и производственных зданий, никаких ограничений в данном вопросе не существует.

Если использовать насос Френетта для обогрева отдельной комнаты или помещения, то целесообразно подключать его к обычным отопительным радиаторам. При применении данного устройства для обеспечения отопления в жилом доме, стоит рассмотреть возможность его совместной эксплуатации с системами водяного теплого пола. Такое конструктивное решение обеспечивает наиболее эффективное отопление. В этом случае датчик, обеспечивающий автоматическую работу, устанавливается в корпусе насоса, а не в стяжке (как для традиционных систем теплого пола).

Несмотря на то, что в эффективность работы такого простого устройства трудно поверить, практика показывает его надежность и высокую работоспособность. Поэтому, если вы задумались об обеспечении энергонезависимого отопления, обязательно рассмотрите возможность установки насосов Френетта.

Тепловой насос Френетта – принцип работы и возможность самостоятельного изготовления

Стремление вложить поменьше и получить побольше всегда было сильно в нашем народе. Не обошла стороной эта особенность и такую практичную область, как эффективное теплоснабжение.

Множество альтернативных установок было изобретено, но лишь единицы нашли реальное применение.

В последние несколько лет активно обсуждается конструкция американского изобретателя Eugene Frenette, который в 1977 оформил патент на тепловой насос.

Как утверждают многие интернет-издания, КПД этой чудо машины может достигать 1000%, но так ли это в действительности? Прежде, чем опровергнуть или доказать это, необходимо разобраться в особенностях конструкции теплового насоса Френетта.

Конструкция и принцип работы

Согласно информации из патента № US 4143639 A, выданного 22 августа 1977, в основе работы тепловой установки лежит практическое применение повышения температуры жидкости при ее интенсивном движении.

Конструкция состоит из 2-х цилиндров, установленных друг в друга. Меньший из них находится на валу, который проходит через всю конструкцию и имеет привод к двигателю.

Он также заполнен маслом, которое при вращении нагревается о стенки цилиндра. С помощью конвекции воздуха, проходящего через прослойку между цилиндрами передается тепловая энергия.

Вентилятор обеспечивает быстрый отток нагретых воздушных масс в помещение.

Судя по сообщениям в прессе, изобретатель неоднократно совершенствовал свою конструкцию. Самый распространенный и известный вариант показан на рисунке.

В новой конструкции был убран вентилятор и внутренний цилиндр. Вместо него на ось установлены стальные диски, которые многократно увеличивают площадь контакта с жидкостью.

Путем вращения достигается эффект нагрева масла, которое из-за возникшего вихревого потока начинает поступать в верхний патрубок и дальше по системе отопления.

Основные элементы эффективности работы данной системы:

  • Закрытая циркуляция теплоносителя.
  • Отсутствие теплообменника как такового.
  • Энергия нагрева превышает в 10 раз мощность приводного двигателя, т.е. КПД – 1000%.

В качестве доказательства приводится совместная работа хабаровских ученых, которые долгие годы совершенствовали конструкцию теплового насоса Френетта.

В качестве основной емкости взята коническая конструкция, внутри которой располагаются диски. При их вращении жидкость начинает стремительное передвижение через отверстия, в результате чего создаются вакуумные зоны. Причем значение температуры в локальных граничных областях может достигать 10000°С.

В зависимости от скорости вращения, жидкость может переходить в следующие состояния:

Тепловой насос Френетта – принцип работы и возможность самостоятельного изготовления

Обороты двигателя/мин

Описание состоянии жидкости

7600-8000

Вода нагревается до 100°С

8000-10000

Образование пара

10000-13000

Парообразование с температурой 450°С

15000 и выше

Разложение воды на составляющие элементы (кислород и водород) с понижением температуры до -60°С

Звучит очень заманчиво. Тем более, что в сети Интернет можно найти как минимум 1 видеоролик, демонстрирующий рабочую модель теплового насоса Френетта, сделанного своими руками (смотрите в конце статьи).

Факты

При более тщательном анализе предложенных схем возникает целый ряд вопросов, на которые ответа найти невозможно.

Математические выкладки и результаты испытаний

Это является фундаментальной основой при проведении научных и исследовательских работ. В данном случае оперируют лишь показателем КПД, который равен отношению полученной энергии к затраченной. Причем ни одна величина, ни другая не представлена в цифровом отображении.

Мощность двигателя

При увеличении площади контакта жидкости с дисками возрастает коэффициент сопротивления, что требует большей энергии для вращения вала. При средних оборотах стандартных электродвигателей 1000-1500 достичь эффекта нагрева воды без увеличения потребляемой энергии невозможно.

Частота вращения вала

Для третей схемы установки необходимая частота вращения вала должна быть не меньше 7000 об/мин. Такие параметры возможны лишь для специальных установок, которые изготавливаются под заказ. Финансовая целесообразность их закупки равна нулю.

Группа ученых из Хабаровска

Описание 3-е модели теплового насоса является лишь частичными выдержками из патента № RU2204089, выданного в ФГУ ФИПС 26 июля 2001г.

В нем упоминается лишь об увеличении эффективности получения горячей воды или пара для коммунальных или промышленных служб. О совершенствовании теплового насоса Френетта не говорится ничего, так же как и о показателях КПД выше 100%.

Интересным становится факт, что данный патент потерял свою силу из-за неуплаты взносов.

Вследствие невозможности проверить на практике эффективность теплового насоса Френетта следует с некоторой долей скептицизма относиться к данному изобретению. И если бы оно было по-настоящему действенно, то мы бы уже давно наблюдали выпуск теплового насоса в промышленных масштабах. -nasos-frenetta/

Насколько выгодно использование теплового насоса?

Теоретически у любого человека есть большой выбор источников энергии. Помимо природного газа, электричества, угля, это еще и ветер, солнце, разница температур земли и воздуха, земли и воды.

На практике выбор ограничен, т.к. все упирается в стоимость оборудования и его обслуживания, а также стабильность работы и сроки окупаемости установок.

Каждый из источников энергии имеет как достоинства, так и серьезные недостатки, ограничивающие его использование.

Галерея изображенийФото из Сжигание дерева – самый первый способ получения тепла. Достоинство этого источника энергии заключается в его доступности и эффективности. Недостатков гораздо больше: приходится тратить много сил на поддержание тепла, в окружающую среду попадают токсичные продукты горения, а вырубка лесов уже давно стала серьезной экологической проблемойГаз – дешевое топливо. Обогрев зданий с помощью газовых котлов – самый выгодный вариант. Однако далеко не в каждой местности есть возможность подключиться к магистрали централизованного газоснабжения. Еще один минус: с каждым годом стоимость энергоресурсов растетАльтернатива подключения к газовой трубе – установка газгольдера. Бытовые приборы (отопительный котел, водонагреватель, плита для приготовления пищи) работают на сжиженном газе. Это хорошее решение для дома, если нет другой возможности обеспечить дом газом. Недостаток – дороговизна оборудования, его монтажа и обслуживанияЭлектричество считается идеальным источником энергии – относительно безопасным, чистым, простым в использовании. Однако обогревать дом с помощью электроэнергии – дорогое удовольствие, поэтому ее используют для дополнительных или альтернативных отопительных системПреимущества котлов на жидком топливе – безопасность, высокий КПД, длительный срок эксплуатации, автономность работы. Для их установки не требуется разрешение и согласование документов с соответствующими инстанциями. Недостаток один, но существенный – высокая стоимость жидкого топлива для котлаСуществует множество видов тепловых насосов, и каждый из них имеет собственные достоинства и недостатки. К плюсам относят экологичность, экономичность, безопасность, долговечность и бесперебойность работы оборудования, а минус – дороговизна. Единственный способ удешевить отопление – сделать теплонасос своими рукамиСолнце – прекрасный источник электроэнергии. Он экологически безопасен, неисчерпаем, а солнечные батареи требуют минимального обслуживания. Однако такое оборудование не отличается ни высоким КПД, ни стабильностью работы. К тому же оно занимает большую площадьГлавные достоинства энергии ветра – возобновляемость, неисчерпаемость, экологичность. Ветрогенераторы часто устанавливают в местностях, где нет возможности подключиться к централизованным сетям подачи электроэнергии или газа. Для стабилизации работы ветряки нередко используют в сочетании с солнечными панелями. Недостатки – серьезные начальные вложения, шум при вращении лопастейДрова как источник тепловой энергииОтопление с помощью природного газаУстановка газгольдера на участкеЭлектрические котлы отопленияЖидкотопливные отопительные котлыГрунтовый тепловой насосСолнечные батареи в качестве источника энергииИспользование ветрогенераторов для получения энергии

Читайте также:  Все о давлении в системе обогрева высотного дома

Установка отопительной системы с теплонасосом – это выгодно с точки зрения удобства эксплуатации. Во время работы оборудования нет шума, посторонних запахов, не требуется установка дымоходов или других вспомогательных конструкций.

Система энергозависима, но для работы теплового насоса нужно минимальное количество электричества.

Теплонасос – хорошая альтернатива привычным отопительным системам. Чтобы сократить начальные расходы на оборудование, можно его собрать своими руками

Сами тепловые установки чрезвычайно экономичны и не требуют особых затрат на обслуживание, но их первоначальная стоимость очень высока.

Далеко не каждый владелец дома или дачи может позволить себе покупку такого дорогого оборудования. Если собрать его самостоятельно и использовать детали от старого холодильника, можно существенно сэкономить.

Тепловые насосы промышленного производства дороги. Считается, что их установка окупается в среднем за 5-7 лет работы, однако этот срок зависит от начальной цены конструкции и может быть гораздо большим

Самодельные установки обходятся буквально в копейки, а их использование позволяет заметно экономить.

Единственный нюанс: производительность самоделок невысока, и они не могут быть полноценной заменой традиционным системам отопления. Поэтому их часто используют как дополнительные или альтернативные варианты отопления.

Состав оборудования

Внешний контур

Для внешнего контура агрегата отопления дома понадобятся трубы. Наибольшей теплопроводностью обладают изделия из металла (но не из нержавеющей стали), поэтому для системы сбора тепла лучше применять их.

Рис.2. Сбор тепла в земле с использованием скважины для самодельного теплонасоса

На рис.2 показан геотермальный тепловой насос своими руками с использованием деталей старого кондиционера и холодильника. Глубина скважины для сбора тепла геотермальных вод составляет порядка 60 – 120 метров. На приведенной схеме не показана обсадная труба, однако ее применение обязательно, поскольку обсадка защищает стенки скважины от разрушения. Регистр сбора внешнего тепла должен находиться внутри обсадной трубы.

Рис.3. Поверхностный сбор внешнего тепла

Сбор пространственной энергии для отопления дома может производиться не только через глубинную скважину, но и с использованием горизонтальной системы труб, заглубленных не менее, чем на величину промерзания грунта.

Достаточный результат дает сбор тепла из водоема, поскольку на дне температура воды всегда составляет 4 градуса тепла, поскольку именно в таком состоянии она имеет наибольшую плотность. Привлекательной стороной является значительно меньший объем земляных работ.

Используются для сбора тепла и системы, нагревающиеся под воздействием солнца. Такие блоки устанавливаются чаще всего на крыше дома и предназначаются для нагрева воды или воздуха. Они существенно повышают температуру в испарителе теплонасоса, повышая эффективность системы отопления дома.

Рис.4. Использование гелиоколлектора в системе обогрева здания теплонасосом

Испаритель

Рис. 5. Форма теплоэлемента испарителя должна обеспечивать максимальный контакт с хладагентом

Изготавливая тепловой насос своими руками, часто используют пригодные для эксплуатации узлы и детали из старого холодильника или кондиционера, а также вышедшей из строя сплит – системы.

Компрессор

На самодельных теплонасосах чаще всего применяют компрессоры из имеющейся в наличии старой техники. Когда система агрегата собрана и испытана, можно подумать о замене компрессора из старого холодильника на другой, более или менее мощный

Выбирая компрессор, лучше всего обратить внимание на узлы из сплит –  систем, отличающиеся повышенной мощностью и надежностью. Современные агрегаты, как правило, оснащаются блоками автоматического управления и регулировки, что значительно упрощает управление этими агрегатами

Рис.6. Компрессор для теплового насоса

Конденсатор

К выбору этого элемента системы нужно подойти особенно тщательно, поскольку он представляет собой сосуд, работающий под давлением. Предпочтительно использовать старый газовый баллон. Его придется разрезать, чтобы поместить туда теплообменник, а затем снова сварить.

Дроссели

В теплонасосах это устройства для сброса давления из конденсатора в испаритель. Деталь легко найти в магазинах или мастерских по ремонту бутовой техники, поскольку они очень долговечны в работе.

Рис.7. Дроссель для теплонасоса